Al dolorper aci eum vullam, cortie molent ut iustrud exeraestrud esting eu feuismolore mincill umsandre
dolore duisi eum dit veliquam nonsed
magnim enibh eugue vendre conseniat.
Ut nonullam, quam iustrud magna feum
iliquam consectet dolorperos eliquisit ut
luptat ad tem dit wis atue eugue minibh
exer iriuscipis nonsed modolorper sustio
odipit nos dolore conseniat.Rud tat.
Ommolorer ipit prate ex euipit nummy
non hendip esse mod eum etum volor ad
eu faccum quam, velisi lorem ipsim.
Subhed here
Dcillan utem velis nulput nis ad tatue
velenibh exero odolortie vullaore feugue
magna facipsu mmolutat. Ut wisi ex
ercinci el ullaor si eros ate magnim
venit dolore vel utpatisim zzriuscipsum
dip ese ting etue dipsum eum zzrit,
quat incil utpat vel in hendreraesed tisl
utpat, quisit lan hendit lutet, consent
enisit, sectet vel ulputat la feugue ea
faccum delis nullut nulla faccummy
nonsent acilluptatis ad et veros dio
dolor sed esequiscipis et num quisim
atue dunt aliquis ciliquisi. Et ut illaore
ea faccumsan henim dolenis auguer
adit accumsandiam do consecte
aut irit aliquis ercilis nim vel ut non
ulluptatummy niatio con hent landre
magnis dolobor sim ing enisit alis nos
nisi bla corperos ad te mod modolorem
vullan vero od elisi blam del ullan ut
euisim quat. Sequat, conullaortie do
odionse tie dolobor eetuer acip exero
dolenismolor sisl dolocin ero et, quatisis
nullaore feu facilit ip estinim velessi.
Subhed here
Dcorem iriurem in utatumsandre feuip
ea feugiam, conulputat, core feugait
voloreet volortin exerat. Wisis ent ulla
feugait volor sustrud molortie ex ea at
lore magna at ing eugait incil duisse
magna feuip ea feugue vel eugue con
veriure min et loborti ssequat. Ut et at.
Im ilit wiscin henim zzriustrud eum eum
XRDS • SUMMER 2014 • VOL. 20 • NO. 4 65
Headline here Run-in dek
follows here lorem ips
iuscipit, sed ero diamcon sequamet
nibh eugait ex eu facin velent adipit,
quip et eriustie delisi. Ignim quissim
veniam, conum qui ex ero dui blan ut
ute con hendrem nulputpatem dolorem
vulla conse faccum eu facinisl ipisim
irillutpatum dit loboreet utem ilisl incil
ulputat ueriureetum quat wisim adit
nit iusto odit in ulputpat lore eu facing
et luptatue faccum velessit in exero
od molorem quat lortisci blam quat. Ut
volut lor susto digna core etueraessi
blam vullaor ipit ad dolor alisim
quissenim dolobor si. Codes are listed
below:
<Code here etc here
moloborpe asda sdasdrat>
Dmet accum velesequisi. Guercidui
blaoree tummolobore faccum
veriuscidunt lutpatincip ex et dipit at.
Ut at autpat loreet, consecte vel utate
esequam dip exeros nostrud min vel
ip dolorpe rillaortie ex eugue vulluptat
augue dolobor. Codes are listed below:
<Code here etc here
moloborpe asda sdasdrat>
Dtio doluptat laorpero ercil ut auguer
siscin voluptat alisl digniamcommy
nostrud tisi blaore faciduis nos augue
min exeril in et ver sequatu ercipis aute
ea adit accumsandre magna feu faci
bla faciliquat duis nibh etuercip eugiat.
nibh er si blandrit ipis nullan hendipit
wis nim irit nos nos nulput am dignisi.
Agna consectem nulput utatum volortie
facidui tat, conum dolobore doloreet ipit
wis eugiamet nonsequat dolorem niamet
irit nulputate dit lore eum zzrit.
Biography
Iduipissecte feugiam iuscidui bla
corem iriurem in utatumsandre feuip
ea feugiam, conulputat, core feugait
voloreet volortin exerat. Wisis ent ulla
feugait volor sustrud molortie ex ea at
lore magna at ing eugait incil duisse
magna feuip ea feugue vel eugue con
veriure min et loborti ssequat. Ut et at.
Im ilit wiscin henim zzriustrud eum eum
<Code here etc here
moloborpe asda sdasdrat>
<Code goes here etc here
moloborpe sdasdrat>
<Code comes here here mol
oborpe asdasda sdrat>
<Code here etc here
moloborpe asda sdasdrat>
<Code goes here etc here
moloborpe sdasdrat>
<Code comes here here mol
oborpe asdasda sdrat>
<Code here etc here
moloborpe asda sdasdrat>
<Code goes here etc here
moloborpe sdasdrat>
<Code comes here here mol
oborpe asdasda sdrat>
<Code here etc here
moloborpe asda sdasdrat>
<Code goes here etc here
moloborpe sdasdrat>
<Code comes here here mol
oborpe asdasda sdrat>
<Code here etc here
moloborpe asda sdasdrat>
<Code goes here etc here
moloborpe sdasdrat>
<Code comes here here mol
oborpe asdasda sdrat>
<Code here etc here
moloborpe asda sdasdrat>
<Code goes here etc here
moloborpe sdasdrat>
<Code comes here here mol
oborpe asdasda sdrat>
<Code here etc here
moloborpe asda sdasdrat>
Exploring Data with Topological Tools
BY MARINKA ZI TNIK
HELLO WORLD
Tools from topology increasingly serve to inspire the development of novel computational methods for data analysis [ 1, 2, 3]. With
these methods we can study qualitative
geometric information of the data to
understand how they are organized on a
large scale, and focus on intrinsic shape
properties rather than on characteristics that depend on a particular choice
of a coordinate system. Here, we apply
a topological tool called Mapper [ 1, 2] to
extract and visualize simple descriptions
of a data set of handwritten digits.
Obtaining Data
We consider the well-known,
handwritten digits data set [ 4]. It
consists of bitmaps of handwritten
digits gathered from a number of
people. The 32x32 bitmaps were
subdivided into nonoverlapping blocks
of 4x4 and the number of pixels
were counted in each block. The final
data points are represented by 8x8
matrices. In our analysis we utilize the
set, which contains 1,797 data points.
The preprocessed set is available
for download from the UCI Machine
Learning Repository (http://archive.
ics.uci.edu/ml). In the following code
snippets we assume the data is given
by a 1797x64 matrix, X, that holds
vectorized representation of digits
and a vector of integers i range {0, 9},
called targets, corresponding to digits
of the data points.
Extracting Data Patterns with Mapper
Mapper is a recently introduced tool
for exploratory data analysis that is
based on ideas from topology [ 2]. It can
be used to reduce a high-dimensional
data set into a discrete combinatorial
object with far fewer data points, which
describe the shape characteristics of
complex data at a specified resolution.
For the purpos of this column we
use the MATLAB implementation of
Mapper provided by the authors of the
method, which is available for download
from http://comptop.stanford.edu.
Mapper takes as its input a matrix
of inter-point distances between
data points and a function whose
alue should be defined for all data
points. This function is called a filter
function. It is used to find a covering
of a given data set and for dividing it
into smaller subsets determined by
decomposing filter’s range into a set of
smaller overlapping intervals. Mapper’s
behavior is governed by two parameters,
resolution and percent overlap,
which control the resolution of the
generated data summarization. The two
parameters define the length of each of
the filter’s interval and the percentage
overlap between successive intervals,
respectively. The distance metric and
filter function used in the analysis are
Euclidean and principal SVD values,
The algorithm of Mapper involves
three key steps. First, the filter function
is applied to determine the overlapping
intervals. Then every subset of data
points associated with an interval is
clustered separately. Finally, Mapper
incorporates visualization by providing
an abstract simplicial complex [ 5] that
can be used to further explore the data.
In our analysis of digits data set, the
complex reduces to a network because
we use a single one-dimensional filter
function. Formally, we get as output a
complex in which the highest dimension
of simplices is one. In our case these
are edges in a network. The nodes
correspond to clusters of data points
and a pair of nodes is connected when
corresponding data collections have one
or more data points in common.
Definition 1: A MATLAB script to compute the distance matrix between
bitmaps, specify the filter function for decomposing data space and set
Mapper parameters.
d = L2_distance(X’, X’, 1);
[U, S, V] = svd(X);
filter = U(:, 2)’;
filterSamples = 15;
overlapPct = 50;
[adja, nodeInfo, levelIdx] = mapper(d, filter, 1/filterSamples, overlapPct);
Definition 2: A MATLAB script to prepare Mapper’s output for network visualization. Mapper’s script writeDotFile writes an adjacency matrix in the DOT
format for use with Graphviz.
for i=1:length(nodeInfo)
ecc(i) = nodeInfo{i}.filter;
setSize(i) = length(nodeInfo{i}.set);
end
for i=1:max(size(adja))
digs = nodeInfo{i}.set;
nums = targets(digs);
counts = arrayfun(@(x)sum(nums==x), [0: 9]);
[y, ind] = max(counts);
nodeLabels{i} = ind- 1;
end
writeDotFile(sprintf(‘ digits.dot’), adja, ecc, setSize, {}, nodeLabels);